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Abstract
We consider three different incompatible bi-Hamiltonian structures for the
Lagrange top, which have the same foliation by symplectic leaves. These
bivectors may be associated with different 2-coboundaries in the Poisson–
Lichnerowicz cohomology defined by canonical bivector on e∗(3).
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Mathematics Subject Classification: 70H20, 70H06, 37K10

1. Introduction

In recent years considerable progress has been made in investigations of the integrable systems
having enough functionally independent integrals of motion in the involution with respect to
a pair of compatible Poisson brackets on the bi-Hamiltonian manifold M:

{Hi,Hj } = {Hi,Hj }′ = 0, i, j = 1, . . . , n. (1.1)

Following [17] such systems will be called bi-integrable systems.
Historically the majority of them come from stationary flows, restricted flows or the Lax

equations of underlying soliton systems (see references in [1, 9]). Construction of integrals of
motion for such systems is usually based on the Lenard–Magri recurrence relations. In order
to solve the corresponding equations of motion in framework of the separation of variables
method we have to use some suitable reductions of the Poisson bivectors [1, 10].

The other class of bi-integrable systems comes from r-matrix algebras, classifications of 2-
coboundaries in the Poisson–Lichnerowicz cohomology and the separation of variables method
[3, 18–21]. The corresponding Poisson brackets {·, ·} and {·, ·}′ have a common foliation
as their symplectic leaf foliations. In this case we lose benefits given by bi-Hamiltonian
recurrence relations, but we can obtain the separated variables directly.

The main aim of this paper is to discuss different bi-Hamiltonian structures of both types
for the Lagrange top.
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2. The bi-Hamiltonian manifolds

In this section we describe the manifolds where our bi-integrable systems will be defined.
Let M be a finite-dimensional Poisson manifold endowed with a bivector P fulfilling the

Jacobi condition

[P,P ] = 0

with respect to the Schouten bracket [·, ·]. We will suppose that P has the constant corank
k, dim M = 2n + k, and that C1, . . . , Ck are globally defined independent Casimir functions
on M

PdCa = 0, a = 1, . . . , k.

The 2n-dimensional symplectic leaves of P form a symplectic foliation.
A bi-Hamiltonian manifold M is a smooth (or complex) manifold endowed with two

compatible bivectors P,P ′ such that

[P,P ] = [P,P ′] = [P ′, P ′] = 0. (2.1)

Classification of compatible Poisson bivectors on low-dimensional Poisson manifolds is
nowadays a subject of intense research. However the higher dimensional problem is virtually
untouched.

2.1. Integrals of motion from the Poisson bivectors

Let us consider bi-Hamiltonian manifold M with some known bivectors P and P ′. Moreover, let
us suppose that there are k polynomial Casimir functions of the Poisson pencil Pλ = P ′ −λP ,

Ha(λ) =
na∑
i=0

Ha
i λna−i , Ha

0 = Ca, a = 1, . . . , k, (2.2)

such that n1 + n2 + · · · + nk = n and the differentials of the coefficients Ha
i are linearly

independent of M.
The collection of the n bi-Hamiltonian vector fields

X
(a)
i = P dHa

i = P ′ dHa
i−1, i = 1, . . . , na, a = 1, . . . , k (2.3)

associated with the Lenard–Magri sequences defined by the Casimirs Ha(λ) is called the
Gel’fand–Zakharevich system.

The standard arguments from the theory of Lenard–Magri chains show that all the
coefficients Ha

i (2.2) pairwise commute with respect to both {·, ·} and {·, ·}′. It allows us
to get non-trivial bi-integrable systems with integrals of motion Ha

i starting from the Casimir
functions Ha

0 = Ca only.
If there exists a foliation of M, transversal to the symplectic leaves of P and compatible

with the Poisson pencil (in a suitable sense), then the restrictions of the Gel’fand–Zakharevich
systems on symplectic leaves of P are separable in the so-called Darboux–Nijenhuis variables
[1].

Summing up, if we have two compatible Poisson bivectors P,P ′ and the Casimir functions
Ca of P, then we can get integrals of motion Hi in the bi-involution using recurrence relations
(2.3) and, if we are lucky, then we obtain the separated variables after some appropriate
reduction.

Remark 1. We know such Poisson structures for the Clebsch problem, for the Steklov–
Lyapunov model, for the Kowalewski gyrostat but the suitable reduction procedures are
unknown up to now.
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2.2. The Poisson bivectors from integrals of motion

Let us consider bi-Hamiltonian manifold M with canonical bivector P and some integrable
system with integrals of motion Hm. According to the Liouville–Arnold theorem any integrable
system admits separation of variables in the action-angle coordinates.

Integrable system on the symplectic leaves of M will be said to be separable if the complete
integral S(q, t) of the Hamilton–Jacobi equation has an additive form

S(q, t, α1, . . . , αn, C1, . . . , Ck) = −Ht +
n∑

i=1

Si(qi, α1, . . . , αn, C1, . . . , Ck) (2.4)

in a set of canonical variables (p, q) = (p1, . . . , pn, q1, . . . , qn). In this case the Jacobi
equations

pj = ∂

∂qj

Sj (qj , α1, . . . , αn, C1, . . . , Ck) (2.5)

yield the separated relations [1, 13]:

φj (pj , qj , α1, . . . , αn, C1, . . . , Ck) = 0, det

[
∂φi

∂αj

]
�= 0, {qi, pi} = 1. (2.6)

Separated equations depending on additional parameters C1, . . . , Ck are well known, as an
example we could allege on such well-known integrable systems as the Jacobi problem
of geodesics on ellipsoid, the Kowalevski top, the Goryachev–Chaplygin top, the Steklov–
Lyapunov model, the Heisenberg and Gaudin magnets and so on, see [1, 13] and references
within.

Remark 2. The function S(q, t, α1, . . . , αn, C1, . . . , Ck) is the generating function of the
canonical transformation from the separated variables (q, p) to the action-angle variables.
The modern proof of the action-angle theorem in the general, and most natural, context of
integrable systems on the Poisson manifolds may be found in [7].

If we resolve the separated equations (2.5)–(2.6) with respect to parameters α1, . . . , αn

one gets n independent integrals of motion

αm = Hm(p, q, C), m = 1, . . . , n, (2.7)

as functions on the phase space M with coordinates z = (p, q, C).
These integrals of motion Hi(p, q, C) are in the involution

{Hi,Hj }f = 0, i, j = 1, . . . , n, (2.8)

with respect to the following bracket {·, ·}f on M,

{qi, pj }f = δijfj (pj , qj ), (2.9)

{pi, pj }f = {qi, qj }f = {pi, Cj }f = {qi, Cj }f = {Ci, Cj }f = 0,

which depends on n arbitrary functions f1(p1, q1), . . . , fn(pn, qn) [17]. This bracket defines
the Poisson bivector

P f =
⎛⎝ 0 diag(f1, . . . , fn) 0

−diag(f1, . . . , fn) 0 0
0 0 0

⎞⎠ , (2.10)

compatible with the Poisson bivector P on M and such that

P f dCa = 0, a = 1, . . . , k. (2.11)
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If all the fi �= 0, then P f has the same foliations by symplectic leaves as P. So, it is an explicit
construction of the Poisson structures having the same foliation by symplectic leaves.

Compatibility conditions (2.1), equations (2.8) and (2.11) may be checked in any
coordinate system on M. So, for any integrable system on M we can try to solve the following
system of equations,

[P,P f ] = [P f , P f ] = 0, P f dCa = 0, {Hm,Hl}f = 0, (2.12)

with respect to P f . Obviously enough, in their full generality equations (2.12) are too difficult
to be solved because it has infinitely many solutions labeled by different separated coordinates
and their functions f = (f1, . . . , fn) [17]. In order to get a particular solution of the system
(2.12) we have to use some additional assumptions or the couple of ansätze [16, 20, 21].

Nevertheless, using any known solution P f of (2.12), we can easily solve the following
system of algebraic equations,

P f dHm = P

n∑
l=1

Fml dHl, m = 1, . . . , n, (2.13)

with respect to entries of the n × n control matrix F. According to [1] the eigenvalues of the
control matrix F are the separated coordinates

det(F − λI) =
n∏

j=1

(λ − qj ).

The solution of the equations (2.12) and (2.13) may be considered as a direct method of
computation of the separated coordinates qj starting with given integrals of motion only.

Remark 3. In fact we postulate in (2.7) and (2.9) that our separated variables are ‘invariant’
with respect to the Casimirs, as the one considered in [15].

Remark 4. Bivectors P ′ fulfilling the compatibility condition [P,P ′] = 0 are called 2-
cocycles in the Poisson–Lichnerowicz cohomology defined by P on M [8]. The Lie derivative
of P along any vector field X on M,

P ′ = LX(P ) (2.14)

is 2-coboundary, i.e. it is a 2-cocycle associated with the Liouville vector field X. For such
bivectors P ′ the compatibility conditions (2.1) are reduced to the single equation

[LX(P0),LX(P0)] = 0, ⇔ [
L2

X(P0), P0
] = 0. (2.15)

The second Poisson–Lichnerowicz cohomology group H 2
P0

(M) of M is precisely the set of
bivectors P1 solving [P,P ′] = 0 modulo the solutions of the form P1 = LX(P0). We can
interpret H 2

P0
(M) as the space of infinitesimal deformations of the Poisson structure modulo

trivial deformations. For regular Poisson manifolds cohomology reflects the topology of the
leaf space and the variation in the symplectic structure as one passes from one leaf to another.

In our case the components of the Liouville vector field X in the variables (p, q, C) are
equal to

Xj =
{
Fj (qj , pj ), j = 1, . . . , n

0, j = n + 1, . . . , 2n + k

and bivector P f = LX(P ) has the form (2.10) with

fj (qj , pj ) = − ∂

∂qj

Fj (qj , pj ).

4
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So, in fact in the separation of variables method we are looking for special 2-coboundaries
(2.10) having the same foliation by symplectic leaves as the bivector P (2.11).

Summing up, if we have the canonical Poisson bivectors P, it is Casimir functions Ca

and integrals of motion Hm for some integrable system, then we can try to get the compatible
Poisson bivector P f from equations (2.1), which immediately gives rise to the corresponding
separated variables.

3. The Lagrange top

Let two vectors J = (J1, J2, J3) and x = (x1, x2, x3) be coordinates on the Euclidean algebra
e(3)∗ with the Lie–Poisson bracket

{Ji, Jj } = εijkJk, {Ji, xj } = εijkxk, {xi, xj } = 0, (3.1)

where εijk is the totally skew-symmetric tensor. This bracket has two Casimir functions

C1 = |x|2 ≡
3∑

k=1

x2
k , C2 = (x, J ) ≡

3∑
k=1

xkJk. (3.2)

Fixing their values one gets a generic symplectic leaf of e(3)

Oab : {x, J : C1 = α2, C2 = β},
which is a four-dimensional symplectic manifold. As usual we identify (R3,∧) and
(so(3), [·, ·]) by using the well- known isomorphism of the Lie algebras

z = (z1, z2, z3) → zM =
⎛⎝ 0 z3 −z2

−z3 0 z1

z2 −z1 0

⎞⎠ , (3.3)

where ∧ is the cross product in R
3 and [·, ·] is the matrix commutator in so(3). In these

coordinates the Poisson bivector on e∗(3) is equal to

P =
(

0 xM

xM JM

)
. (3.4)

This Lie–Poisson tensor in (x, J ) variables will be called canonical tensor and the
transformations preserving this form of the Lie–Poisson tensor will be called canonical
transformations.

We use this name because the rigid body motion about a fixed point under the influence
of gravity is described by six canonical dynamical variables: three components of the angular
momentum J = (J1, J2, J3) and three components of the gravity vector x = (x1, x2, x3),
everything with respect to a moving orthonormal frame attached to the body.

The Lagrange top is one of the most classical examples of integrable systems with the
following integrals of motion,

H̃1 = J3, H̃2 = J 2
1 + J 2

2 + mJ 2
3 + ax3, a,m ∈ R, (3.5)

defined up to canonical transformations. This is a special case of rotation of a rigid body
around a fixed point in a homogeneous gravitational field, characterized by the following
conditions: the rigid body is rotationally symmetric, i.e. two of its three principal moments of
inertia coincide, and the fixed point lies on the axis of rotational symmetry.

The explicit formulae for the position of the body in space were found by Jacobi [4]. For
an actual integration of the corresponding equations of motion in terms of elliptic functions
see [5] and for a more modern account [2, 11].
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The geometric properties of integrable systems are invariant with respect to any
transformation of the integrals of motion Hk → H̃k(H1, . . . , Hn), which has an effect on
the parametrization of trajectories of motion only. Therefore, when we search the variables
of separation (2.4) or the second Poisson brackets (1.1) we can consider a more symmetric
system with the following integrals of motion,

H1 = H̃1 = J3, H2 = H̃2 − (m − 1)H̃1 = J 2
1 + J 2

2 + J 2
3 + ax3, (3.6)

instead of the Lagrange top. We use this linear transformation of the initial integrals of motion
(3.5) for the brevity only.

3.1. Recurrence relations

According to [2] the invariant manifold of the Lagrange top is isomorphic to the invariant
manifolds of one-gap solutions of the nonlinear Schrödinger equation. Their bi-Hamiltonian
structures may be identified as well.

So, for the Lagrange top there are two known Poisson bivectors P ′ compatible with the
canonical bivector P (3.4) [2, 12]:

P ′
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 x3 −x2 0 0 0
−x3 0 x1 0 0 0
x2 −x1 0 0 0 0
0 0 0 0 − a

2 0
0 0 0 a

2 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and P ′

2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 J3 −J2 0 a
2 0

−J3 0 J1 − a
2 0 0

J2 −J1 0 0 0 0
0 a

2 0 0 0 0
− a

2 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.7)

They are 2-coboundaries P ′
1,2 = LX1,2(P ) and the corresponding Liouville vector fields X1,2

may be obtained from the corresponding vector fields from [20, 21] by using contraction of
so∗(4) to e∗(3).

The Poisson pencil Pλ = P ′
1 − λP has one non-trivial polynomial Casimir (2.2)

H 1(λ) = C1, H 2(λ) = 2λ2C2 + λH2 + aH1,

while the second Poisson pencil Pλ = P ′
2 − λP has two non-trivial Casimirs

H 1(λ) = −2λC1 + H2, H 2(λ) = −2λC2 + aH1.

Using the corresponding recurrence relations

0 = P ′
1 dC1,

P ′
1H1 = 0, aP dH1 = P ′

1 dH2, P dH2 = 2P ′
1 dC2,

(3.8)

and
P ′

2 dH2 = 0, P dH2 = −2P ′
2 dC1,

P ′
2 dH1 = 0, aP dH1 = −2P ′

2 dC2,
(3.9)

we can easily get integrals of motion H1,2 (3.6) starting with the known Casimir functions
C1,2 (3.2).

The Poisson tensors P ′
1 and P ′

2 are compatible with each other, i.e. [P ′
1, P

′
2] = 0. So,

existence of the triad P,P ′
1, P

′
2 of mutually compatible Poisson bivectors leads to a tri-

Hamiltonian structure for the Lagrange top. Reducing à la Marsden–Ratiu this tri-Hamiltonian
structure we can get the separated variables for the Lagrange top. The reduction may not be
unique, since possibly different separated variables can be constructed on the symplectic leaf
of P [10].
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3.2. Poisson structures with the same foliation by symplectic leaves

The generic solution of the equation Pf dC1,2 = 0 may be parametrized by two vector functions
f = (f1, f2, f3) and g = (g1, g2, g3),

P f =
(

(x, f )xM f ⊗ (x ∧ J ) + Q

−[f ⊗ (x ∧ J ) + Q]T −(x ∧ J )3gM

)
, (3.10)

where

Q =
⎛⎝ x2(x ∧ g)1 x2(x ∧ g)2 x2(x ∧ g)3

−x1(x ∧ g)1 −x1(x ∧ g)2 −x1(x ∧ g)3

0 0 0

⎞⎠ .

Here (u ⊗ v)ij = uivj and (u ∧ v)j is the j th entry of the crossproduct u ∧ v of two vectors u
and v.

For any given integrable system on e∗(3) functions f and g have to satisfy one algebraic
equation

{H1,H2}f = 0 (3.11)

and the overdetermined system of algebro-differential equations (2.1). To solve these equations
for the Lagrange top we use some hypothesis about the functions f .

3.2.1. Solution 1. If we put f3 = 0 and (x, f ) = 0, then one gets

f1 =
−arccos

(
x3
|x|

)
(x ∧ J )3

x2, f2 =
−arccos

(
x3
|x|

)
(x ∧ J )3

x1

and

g1 = arctan
(

x1
x2

)
(x ∧ J )3

J1, g2 = arctan
(

x1
x2

)
(x ∧ J )3

J2,

g3 =
− arccos

(
x3
|x|

)
(x ∧ J )3

J3 +
x3

(
arccos

(
x3
|x|

) − arctan
(

x1
x2

))
(x1J1 + x2J2)(

x2
1 + x2

2

)
(x ∧ J )3

.

The corresponding bivector (3.10) we designate as P
f

1 . In this case

F =
(

arctan
(

x1
x2

)
0

2
[
arctan

(
x1
x2

)− arccos
(

x3
|x|

)](
J3 − x3(x1J2+x2J2)

x2
1 +x2

2

)
arccos

(
x3
|x|

)) .

The eigenvalues of F are the separated variables

q1 = arctan

(
x1

x2

)
, q2 = arccos

(
x3

|x|
)

,

which coincide with the Euler angles φ and θ , respectively. The canonically conjugated
momenta read as

p1 = −J3, p2 = −J1 cos

(
arctan

(
x1

x2

))
+ J2 sin

(
arctan

(
x1

x2

))
.

In variables (q, p, C) two compatible bivectors P and P
f

1 have the standard form

P =
⎛⎝ 0 I 0

−I 0 0
0 0 0

⎞⎠ , P
f

1 =
⎛⎝ 0 diag(q1, q2) 0

−diag(q1, q2) 0 0
0 0 0

⎞⎠ . (3.12)

Using variables (q, p, C) we can easily prove that projections of the linear bivectors P ′
1 and

P ′
2 (3.7) cannot be associated with the Euler angles.

7
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3.2.2. Solution 2. If we put f3 = 0 and (x, f ) �= 0 then one gets

f1 = x1 − ix2

(x ∧ J )3
J2 +

x1 − ix2

(J1 − iJ2)2|x| , f2 = − x1 − ix2

(x ∧ J )3
J1 − x1 − ix2

(J1 − iJ2)2|x|
and

gm = − J1 − iJ2

(x ∧ J )3
Jm.

The corresponding bivector (3.10) we designate as P
f

2 . In this case

F =
(

0 − i
2(x2+ix3)

a − J2+iJ3
x2+ix3

)
and one gets complex separated variables

q1,2 = −J2 + iJ3 ±
√

(J2 + iJ3)2 − 2ia(x2 + ix3)

2(x2 + ix3)
, i2 = −1.

In variables (q, p, C) two compatible bivectors P and P
f

2 have the form (2.10)

P =
⎛⎝ 0 I 0

−I 0 0
0 0 0

⎞⎠ , P
f

2 =

⎛⎜⎝ 0 −diag
(

1
q1

, 1
q2

)
0

diag
(

1
q1

, 1
q2

)
0 0

0 0 0

⎞⎟⎠ ,

First, these separated variables have been appear in the framework of the Sklyanin method
and then have been recovered in [10] by reduction of the compatible linear Poisson bivectors
P ′

1 and P ′
2 (3.7). In variables (q, p, C) these linear bivectors look like

P ′
1 =

⎛⎜⎝ 0 diag
(

a
2q1

, a
2q2

)
w1

−diag
(

a
2q1

, a
2q2

)
0 w2

−w1 −w2 0

⎞⎟⎠
and

P ′
2 =

⎛⎜⎝ 0 −diag
(

a2

4q2
1
, a2

4q2
2

)
w3

diag
(

a2

4q2
1
, a2

4q2
2

)
0 w4

−w3 −w4 0

⎞⎟⎠ .

The matrix elements of wk are brackets {qi, Cj }′m and {pi, Cj }′m, which are some non-trivial
rational functions on the separated variables and Casimirs. For instance

{q1, C2}′1 = iq1p2

q1 − q2
.

We can see that reductions of P ′
1 and P

f

2 on symplectic leaf of P are identical up to
multiplication on a constant. Roughly speaking, in this case reduction consists of removing
the last rows and the last columns of P ′

1 and P
f

2 .

Remark 5. For the Lagrange top this reduction procedure leads to the complex separated
variables and the complex separated relations, which are useless for the qualitative analysis of
motion.

8
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3.2.3. Solution 3. If we put f1 = 0 then one gets (x, f ) = 1 and

gm = axm

2(x ∧ J )3(x3 − ix2)
, f2 = f3 = 1

x2 + ix3
. (3.13)

The corresponding bivector (3.10) we designate as P
f

3 . In this case

F =
(

J1 − iJ2 0

a(x1 − ix2) + a(x1−ix2)
2

|x|(J1−iJ2)2 − x1−ix2
|x|(J1−iJ2)

)
and the separated coordinates are

q1 = J1 − iJ2, q2 = − x1 − ix2

|x|(J1 − iJ2)
.

In variables (q, p, C) two compatible bivectors P and P
f

3 have the form (3.12) and, therefore,
P

f

3 is 2-coboundary. The corresponding separated equations, the Lax matrices, the r-matrix
formalism and the Bäcklund transformations could be found in [6].

The Poisson bivectors P
f

k , k = 1, 2, 3, are incompatible with each other, i.e.
[
P

f

i , P
f

j

] �=
0 at i �= j . Moreover, they are incompatible with the linear bivectors P ′

1,2 (3.7) as well. This
means that we have different bi-Hamiltonian structures associated with the Lagrange top. This
fact deserves further investigation.

4. Another integrable system on e∗(3)

4.1. The Goryachev–Chaplygin top

The well-known Goryachev–Chaplygin case in rigid body dynamics is described by the
following integrals of motion:

H1 = J 2
1 + J 2

2 + 4J 2
3 + ax1, H2 = 2

(
J 2

1 + J 2
2

)
J3 − ax3J1, a ∈ R. (4.1)

On the fixed level (x, J ) = 0 of the second Casimir function the Hamilton function H1

commutes with an additional cubic integral of motion H2. This fact ensures the integrability
of the Goryachev–Chaplygin case.

Substituting ansatz (3.10) into (2.12) at f1 = 0 one gets the following solution,

f2 = 0, f3 = −1,

and

g1 = − J1J3

(x ∧ J )3
, g2 = − J2J3

(x ∧ J )3
, g3 = J 2

1 + J 2
2

(x ∧ J )3
(4.2)

The corresponding polynomial P f (3.10) has been obtained in [18] by using the r-matrix
formalism and the Sklyanin brackets.

Remark 6. The same bivector P f could be easiely found by using the Liouville vector field
X with polynomial entries:

P f = LX(P0), X =
∑

Xm(z)∂/∂zm, z = (x, J ).

If we suppose that Xm(z) are arbitrary quadratic polynomials on M

Xm =
n∑
ij

cij
mzizj , m = 2, . . . , 6, cm

ij ∈ C, (4.3)

9



J. Phys. A: Math. Theor. 41 (2008) 315212 A V Tsiganov

then from (2.12) one easily gets

X = (
0, x3J2, −x2J2, −J1J3, 0, −J 2

2 − J 2
3

)
. (4.4)

In contrast to rational functions (4.2) here we have simple polynomials only. As a useful
by-product we directly prove that the bivector Pf is 2-coboundary in the corresponding
Poisson–Lichnerowicz cohomology.

In this case the control matrix F is equal to

F =
(

2J3 −1
−J 2

1 − J 2
2 0

)
(4.5)

and its eigenvalues

q1,2 = J3 ±
√

J 2
1 + J 2

2 + J 2
3 (4.6)

satisfy the following dynamical equations,

(−1)j (q1 − q2)q̇j = 2
√
P(qj )2 − |x|2a2q2

j , P(λ) = λ3 − λH1 + H2. (4.7)

These equations are reduced to the Abel–Jacobi equations and, therefore, they are solved in
quadratures.

4.2. The Sokolov system on the sphere

Let us consider another integrable at (x, J ) = 0 system on e∗(3) [14] with integrals of motion
second and fourth orders:

H1 = J 2
1 + J 2

2 + 2J 2
3 + a(x3J1 − J3x1) + 2bJ3,

H2 = (
J 2

1 + J 2
2 + J 2

3

)
(2J3 + 2b − ax1)

2.
(4.8)

Using the same anzats (4.3) for the components Xm(z) of the Liouville vector field as for the
Goryachev–Chaplygin top one gets the same solution (4.4) of the equations (2.12). In this
case the control matrix reads as

F =
(

J3
1

2(2J3+2b−ax1)

2
(
J 2

1 + J 2
2 + J 2

3

)
(2J3 + 2b − ax1) J3

)
. (4.9)

Its eigenvalues coincide with the Chaplygin variables (4.6), which are also the separated
variables for the Sokolov system.

4.3. The Kowalevski top

Let us consider the Kowalevski top with the following integrals of motion:

H1 = J 2
1 + J 2

2 + 2J 2
3 − 2bx1,

H2 = ((J1 + iJ2)
2 + 2b(x1 + ix2))((J1 − iJ2)

2 + 2b(x1 − ix2)).
(4.10)

The solution of equations (2.12) has been constructed in [19] by using the r-matrix formalism
and the reflection equation algebra. In our notations this solution is defined by

f1 = −2J1 − (2x1J2 − x2J1)
(
b(x2J2 + x3J3) + J1J

2
3

)
J 2

2 (x ∧ J )3
,

f2 = J2 − J 2
1 + bx1

J2
− x1

(
2J 2

3 − bx1
)

(x ∧ J )3
+

x2J3(2J1J3 + bx3)

J2(x ∧ J )3
+

x1(J1J3 + bx3)
2

J 2
2 (x ∧ J )3

,

f3 = J3 − bx2
2J3

J2(x ∧ J )3
+

(J1J3 + bx3)(J1(x ∧ J )3 − bx1x2)

J 2
2 (x ∧ J )3

10
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and

g1 = b(x1J1 + x3J3)

(x ∧ J )3
+

bx2
(
J 2

1 − J 2
3 + bx1

)
J2(x ∧ J )3

+
J1(J1J3 + bx3)

2

J 2
2 (x ∧ J )3

,

g2 = 2bx2J1

(x ∧ J )3
+

b2x2
2 + J1J3(J1J3 + bx3)

J2(x ∧ J )3
+

bx2J3(J1J3 + bx3)

J 2
2 (x ∧ J )3

,

g3 = bx3J1

(x ∧ J )3
+

bx2(J1J3 + bx3)

J2(x ∧ J )3
+

J3(J1J3 + bx3)
2

J 2
2 (x ∧ J )3

.

The corresponding separated variables q1,2 are the famous Kowalevski variables [19]. In these
variables bivectors P and P f have the form (3.12). It allows us to prove that the second
bivector Pf is the 2-coboundary in the corresponding Poisson–Lichnerowicz cohomology.

5. Concluding remarks

The main result in this paper is construction of the different bi-Hamiltonian structures for the
Lagrange top, which have the same foliation by symplectic leaves. The corresponding three
incompatible Poisson bivectors may be associated with the 2-coboundaries in the Poisson–
Lichnerowicz cohomology defined by canonical bivector P on e∗(3).

As a last remark, we observe that similar bi-Hamiltonian structures exist for some other
integrable systems on e∗(3), for instance for the Kowalevski top. The similar 2-coboundaries
in the Poisson–Lichnerowicz cohomology on so∗(4) were considered in [20, 21].
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